Proton-coupled mechanochemical transduction: a mechanogenerated acid.

نویسندگان

  • Charles E Diesendruck
  • Brian D Steinberg
  • Naoto Sugai
  • Meredith N Silberstein
  • Nancy R Sottos
  • Scott R White
  • Paul V Braun
  • Jeffrey S Moore
چکیده

A novel mechanophore with acid-releasing capability is designed to produce a simple catalyst for chemical change in materials under mechanical stress. The mechanophore, based on a gem-dichlorocyclopropanated indene, is synthesized and used as a cross-linker in poly(methyl acrylate). Force-dependent rearrangement is demonstrated for cross-linked mechanophore samples loaded in compression, while the control shows no significant response. The availability of the released acid is confirmed by exposing a piece of insoluble compressed polymer to a pH indicator solution. The development of this new mechanophore is the first step toward force-induced remodeling of stressed polymeric materials utilizing acid-catalyzed cross-linking reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy transduction in the sodium F-ATPase of Propionigenium modestum.

The F-ATPase of the bacterium Propionigenium modestum is driven by an electrochemical sodium gradient between the cell interior and its environment. Here we present a mechanochemical model for the transduction of transmembrane sodium-motive force into rotary torque. The same mechanism is likely to operate in other F-ATPases, including the proton-driven F-ATPases of Escherichia coli.

متن کامل

Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor.

T cell death-associated gene 8 (TDAG8) is a G-protein-coupled receptor mainly expressed in lymphoid organs and cancer tissues. TDAG8 shares high amino acid sequence homologies with recently reported proton-sensing G-protein-coupled receptors, G2A, OGR1, and GPR4. Here we have identified TDAG8 as a novel proton-sensing receptor. Upon acid stimulation, stably expressed TDAG8 was internalized from...

متن کامل

Loose mechanochemical coupling of molecular motors

In living cells, molecular motors convert chemical energy into mechanical work. Its thermodynamic energy efficiency, i.e. the ratio of output mechanical work to input chemical energy, is usually high. However, using two-state models, we found the motion of molecular motors is loosely coupled to the chemical cycle. Only part of the input energy can be converted into mechanical work. Others is di...

متن کامل

Understanding mechanochemical coupling in kinesins using first-passage-time processes.

Kinesins are processive motor proteins that move along microtubules in a stepwise manner, and their motion is powered by the hydrolysis of ATP. Recent experiments have investigated the coupling between the individual steps of single kinesin molecules and ATP hydrolysis, taking explicitly into account forward steps, backward steps, and detachments. A theoretical study of mechanochemical coupling...

متن کامل

G protein-coupled receptors sense fluid shear stress in endothelial cells.

Hemodynamic shear stress stimulates a number of intracellular events that both regulate vessel structure and influence development of vascular pathologies. The precise molecular mechanisms by which endothelial cells transduce this mechanical stimulus into intracellular biochemical response have not been established. Here, we show that mechanical perturbation of the plasma membrane leads to liga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 30  شماره 

صفحات  -

تاریخ انتشار 2012